Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Частота гармонических колебаний

Гармоническими называют колебания, в которых интересующий нас параметр изменяется во времени по тригонометрическому закону (синус или косинус).

$z=z_m\cos (\omega_0 t+\alpha) (1),$ где:

  • $z_m$ - является амплитудой колебаний;
  • $(\omega_0 t+\alpha)$ – фаза колебаний;
  • $\alpha $ - служит начальной фазой колебаний (фаза колебаний в момент времени, который считают начальным ($t=0$));
  • $\omega_0$ - обозначение циклической (или круговой) частоты процесса.

Колебания играют важную роль в разных физических процессах. Среди множества колебаний гармонические колебания занимают особое место, поскольку:

  1. они считаются наиболее простыми для математического описания;
  2. любое периодическое движение можно разложить на составляющие, которые можно считать гармоническими компонентами рассматриваемого колебательного движения.

Рассмотрим колебательное движение материальной точки.

Кинематическая модель гармонических колебаний

Пусть материальная точка $A$ равномерно движется по окружности (рис.1). Угловую скорость ее движения обозначим $\omega_0=const$. Радиус окружности равен $R$.

Точка движется по окружности. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Точка движется по окружности. Автор24 — интернет-биржа студенческих работ

Проектируя место наше точки в момент времени $t$ (рис.1) на ось $OZ$ мы получим точку $Z$, которая находится на расстоянии $z$ от начала координат (точки $O$). С течением времени (в ходе перемещения материальной точки $A$ по окружности) точка $Z$ будет совершать колебания от положения $Z_1$ до положения $Z_2$ и в обратную сторону.

Рассматриваемое колебание точки $Z$ будет гармоническим. Для его описания достаточно записать закон изменения расстояния $z$ (координаты $z$) от начала координат (точки $O$) в зависимости от времени, то есть получить функцию $z(t)$.

«Частота гармонических колебаний» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Будем считать, что при $t=0$ радиус $ОA$ составляет угол $\alpha$ с осью $OZ$. Через время $t$ данный угол изменится на величину $\omega_0 t$. Из прямоугольного треугольника $OZA$ мы получим:

$z(t)=R\cos (\omega_0 t+\alpha)=z_m\cos (\omega_0 t+\alpha) (2).$

Выражение (2) описывает гармонические колебания точки $A$ по оси $OZ$.

Параметр $R=z_m$ в данном случае – это наибольшее отклонение точки, выполняющей колебания от положения равновесия (точки $O$), данный параметр носит название амплитуды колебаний.

Угловая скорость вращения точки по окружности в данной модели будет играть роль циклической частоты колебаний.

  • При начальной фазе колебаний равной нулю $(\alpha=0),$ имеем $z(t)= z_m\cos (\omega_0 t );$
  • При $\alpha=\frac{\pi}{2}$ мы получим, что $z(t)= z_m\sin (\omega_0 t ).$

Мы видим, что при гармонических колебаниях координата $z$ является функцией синуса или косинуса, зависящей от времени.

Гармонические колебания часто изображают в виде графиков. При этом по горизонтальной оси откладывают время, на вертикальной оси - координату. Получают периодическую кривую (синусоиду или косинусоиду). При этом форма кривой зависит только от амплитуды и круговой частоты гармонических колебаний. Положение данной кривой определяет начальная фаза колебаний.

Период колебаний и круговая частота

Синус (косинус) является периодической функцией, следовательно, рассматриваемое нами движение является периодическим. Период этих тригонометрических функций составляет $T=2\pi$. Это означает, что по истечении времени $T$ точка, выполняющая колебания приходит в свое исходное положение, сохраняя свое направление движения. $T$ называют периодом колебаний.

Период колебаний и круговая частота колебаний связаны выражением:

$\omega_0=\frac{2\pi}{T}(3).$

Частота колебаний

Кроме циклической частоты при описании колебаний используют линейную частоту (или просто частоту), обозначаемую $\nu$.

Линейная частота является величиной обратной периоду колебаний:

$\nu=\frac{1}{T}(4)$.

Она измеряется в герцах (Гц), тогда как единицей измерения циклической частоты является обратная секунда.

Определение 1

Частотой (линейной частотой) называют физическую величину, которая служит характеристикой периодического процесса, равную числу колебаний (повторений) за единицу времени.

$\nu=\frac{n}{t}(5),$

где $n$ - количество колебаний (повторений процесса); $t$ - время наблюдения.

Линейная частота связана с круговой частотой формулой:

$\nu=\frac{\omega_0}{2\pi}(6).$

Формулы циклической частоты для гармонических осцилляторов

Классическими примерами гармонических осцилляторов в механике являются:

  • груз на упругой пружине (пружинный маятник);
  • математический маятник;
  • физический маятник (твердое тело, выполняющее колебания (качания) относительно неподвижной горизонтальной оси, которая проходит через точку, не совпадающую с его центром масс);
  • электрический $LC$ контур.

Допустим, что осцилляторы совершают свободные (без действия внешних сил) колебания при отсутствии трения.

Груз на пружине выполняет колебания с циклической частотой равной:

$\omega_0=\sqrt{\frac{k}{m}}(7),$

где $k$ - коэффициент упругости пружины; $m$- масса тела, подвешенного к пружине.

Круговая частота малых колебаний физического маятника равна:

$\omega_0=\sqrt{\frac{mga}{I}}(8),$

где $m$ - масса маятника; $a$ - расстояние от центра масс, до точки подвеса маятника; $I$ - момент инерции маятника.

Математический маятник - это частный случай физического маятника. У этого маятника массу считают сосредоточенной в одной точке - центре его центре масс. Чаще всего в качестве математического маятника рассматривают шарик, который выполняет колебания на длинной нити.

Циклическая частота колебаний математического маятника равна:

$\omega_0=\sqrt{\frac{g}{l}}(9),$

где $l$ - длина нити.

Классическим примером осциллятора, который может выполнять свободные незатухающие гармонические электромагнитные колебания является идеальный электрический контур, состоящий из конденсатора и катушки индуктивности.

Циклическая частота данных колебаний определяется выражением:

$\omega_0=\frac{1}{\sqrt{LC}}(10)$,

где $C$ - емкость конденсатора; $L$ - индуктивность катушки.

Из приведенных выше формул мы видим, что частота свободных колебаний без учета трения зависит только от свойств самих осцилляторов.

Дата последнего обновления статьи: 22.05.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot